probabilistic analysis of the first zagreb index

نویسندگان

ramin kazemi

چکیده

in this paper we study the zagreb index in bucket recursive trees containing buckets with variable capacities. this model was introduced by kazemi in 2012. weobtain the mean and variance of the zagreb index andintroduce a martingale based on this quantity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Analysis of the First Zagreb Index

In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.

متن کامل

On the second order first zagreb index

Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...

متن کامل

On the first variable Zagreb index

‎The first variable Zagreb index of graph $G$ is defined as‎ ‎begin{eqnarray*}‎ ‎M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}‎, ‎end{eqnarray*}‎ ‎where $lambda$ is a real number and $d(v)$ is the degree of‎ ‎vertex $v$‎. ‎In this paper‎, ‎some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...

متن کامل

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

Note on Properties of First Zagreb Index of Graphs

Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.

متن کامل

Multiplicative Versions of First Zagreb Index

The first Zagreb index of a graph G, with vertex set V (G) and edge set E(G), is defined as M1(G) = ∑ u∈V (G) d(u) 2 where d(u) denotes the degree of the vertex v. An alternative expression for M1(G) is ∑ uv∈E(G)[d(u) + d(v)]. We consider a multiplicative version of M1 defined as Π∗1(G) = ∏ uv∈E(G)[d(u) + d(v)]. We prove that among all connected graphs with a given number of vertices, the path ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

ناشر: university of isfahan

ISSN 2251-8657

دوره 2

شماره 2 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023